Experimental and theoretical investigation of annular flow condensation in microgravity
نویسندگان
چکیده
Vehicles for future manned space missions will demand unprecedented increases in power requirements and heat dissipation. Achieving these goals while maintaining acceptable size and weight limits will require replacing present single-phase thermal management components with far more efficient twophase counterparts. This study discusses the development of an experimental facility for the study of annular condensation of FC-72 in microgravity, which was tested in parabolic flight as a prelude to the development of NASA’s Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS). The flow behavior of the condensate film is shown to be sensitive mostly to the mass velocity of FC-72, with lowmass velocities yielding laminar flowwith a smooth interface, and high mass velocities turbulent flow with appreciable interfacial waviness. A select number of tests repeated in microgravity, Lunar gravity and Martian gravity prove that the influence of gravity is very pronounced at low mass velocities, manifest by circumferential uniformity for microgravity versus appreciable thickening along one side of the condensation tube for Lunar and Martian conditions. However, the thickening is nonexistent for Lunar and Martian conditions at high mass velocities due to increased vapor shear on the film interface, proving high mass velocity is an effective means to negating the influence of gravity in space missions. For microgravity, the condensation heat transfer coefficient is highest near the inlet, where the film is both thin and laminar, and decreases along the condensation length, but increases again downstream for high mass velocities due to turbulence and increased waviness. A model is proposed to predict the condensation heat transfer which accounts for dampening of turbulent fluctuations near the film interface. The model shows good agreement with the heat transfer coefficient data in both trend and
منابع مشابه
Numerical investigation of upward air-water annular, slug and bubbly flow regimes
In this paper, numerical investigation of upward two phase flow of air-water has been studied. Different conditions of flow regimes including annular, wispy annular, slug, churn and bubbly are simulated based on Hewitt and Roberts map, and a good agreement between the experimental data of the map and the numerical simulation has been observed. Accordingly, a proper CFD model in CFD software of ...
متن کاملExperimental Investigation on Heat Transfer of Silver-Oil Nanofluid in Concentric Annular Tube
In order to examine the laminar convective heat transfer of nanofluid, experiments carried out using silver-oil nanofluid in a concentric annulus with outer constant heat flux as boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique and observed no nanoparticles agglomeration during nanofluid preparation process and carried out experiments. The average size...
متن کاملAn Experimental and Theoretical Investigation of Corrosion Mechanism in a Metallic Stack
This paper presents an experimental and theoretical investigation of the causes of corrosion of stack in a cement plant. In this paper, information related to metallic stack failures are given in the form of a case study in Neka Cement Plant, Mazandaran, Iran. Heavy corrosion attacks were observed on the samples of stack. The failure can be caused by one or more modes such as overheating, stres...
متن کاملModeling of A Single Turn Pulsating Heat Pipe based on Flow Boiling and Condensation Phenomena
Demand for high-performance cooling systems is one of the most challenging and virtual issues in the industry and Pulsating heat pipes are effective solutions for this concern. In the present study, the best predictor correlations of flow boiling and condensation are taken into account to model a single turn pulsating heat pipe mathematically. These considerations, result in derivation of more ...
متن کاملNumerical Simulation and Optimization Design of the Annular Mechanical Foam Breaker
The annular foam breaker is one which uses the vacuum and shear force generated by the Coanda effect to break foam. The pressure distribution directly affects its performance. So an investigation on the flow characteristics inside the annular foam breaker is important to optimize its structure. In this paper, the computational fluid dynamics (CFD) code, FLUENT, is employed to simulate the flow ...
متن کامل